2,445
Views
104
CrossRef citations to date
0
Altmetric
Original Articles Radiophysics/Radiobiology

LET-painting increases tumour control probability in hypoxic tumours

, , , , , , , , & show all
Pages 25-32 | Received 04 Jun 2013, Accepted 30 Jul 2013, Published online: 10 Sep 2013
 

Abstract

LET-painting was suggested as a method to overcome tumour hypoxia. In vitro experiments have demonstrated a well-established relationship between the oxygen enhancement ratio (OER) and linear energy transfer (LET), where OER approaches unity for high-LET values. However, high-LET radiation also increases the risk for side effects in normal tissue. LET-painting attempts to restrict high-LET radiation to compartments that are found to be hypoxic, while applying lower LET radiation to normoxic tissues. Methods. Carbon-12 and oxygen-16 ion treatment plans with four fields and with homogeneous dose in the target volume, are applied on an oropharyngeal cancer case with an identified hypoxic entity within the tumour. The target dose is optimised to achieve a tumour control probability (TCP) of 95% when assuming a fully normoxic tissue. Using the same primary particle energy fluence needed for this plan, TCP is recalculated for three cases assuming hypoxia: first, redistributing LET to match the hypoxic structure (LET-painting). Second, plans are recalculated for varying hypoxic tumour volume in order to investigate the threshold volume where TCP can be established. Finally, a slight dose boost (5–20%) is additionally allowed in the hypoxic subvolume to assess its impact on TCP. Results. LET-painting with carbon-12 ions can only achieve tumour control for hypoxic subvolumes smaller than 0.5 cm3. Using oxygen-16 ions, tumour control can be achieved for tumours with hypoxic subvolumes of up to 1 or 2 cm3. Tumour control can be achieved for tumours with even larger hypoxic subvolumes, if a slight dose boost is allowed in combination with LET-painting. Conclusion. Our findings clearly indicate that a substantial increase in tumour control can be achieved when applying the LET-painting concept using oxygen-16 ions on hypoxic tumours, ideally with a slight dose boost.

Acknowledgements

Bjarne Thomsen, Dept. of Physics and Astronomy, Aarhus University is thanked for providing cluster computing time. This project was supported by CIRRO – The Lundbeck Foundation Center for Interventional Research in Radiation Oncology, The Danish Council for Strategic Research (http://www.cirro.dk) and by the Danish Cancer Society (http://www.cancer.dk) project ID# DP08023. We acknowledge support from ULICE network under the EU framework, contract no. 228436.

Declaration of interest: The authors report no conflicts of interest. The authors alone are responsible for the content and writing of the paper.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.