323
Views
83
CrossRef citations to date
0
Altmetric
Original Article

Role of Storage on Changes in the Mechanical Properties of Tendon and Self-Assembled Collagen Fibers

, , &
Pages 155-164 | Received 12 Jul 1999, Accepted 21 Feb 2000, Published online: 06 Aug 2009
 

Abstract

Fibrous collagen networks are the major elements that provide mechanical integrity to tissues; they are composed of fiber forming collagens in combination with proteoglycans (PGs). Using uniaxial tensile tests we have studied the viscoelastic mechanical properties of rat tail tendon (RTT) fibers and self-assembled collagen fibers that were stored at 22°C and 1 atm of pressure. Our results indicate that storage of RTT and self-assembled type I collagen fibers results in increased elastic and viscous components of the stress-strain behavior consistent with the hypothesis that storage causes the introduction of crosslinks.

Analysis of the elastic and viscous mechanical data suggests that the elastic constant of the collagen molecule in RTT is about 7.7 GPa. Measurement of the viscous component of the stress-strain curves for RTTs and self-assembled collagen fibers suggests that PGs may increase the viscous component and effectively increase the collagen fibril length.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.