55
Views
55
CrossRef citations to date
0
Altmetric
Original Article

GDF-5 Deficiency in Mice Leads to Disruption of Tail Tendon Form and Function

, , , , , , & show all
Pages 175-186 | Received 14 Nov 2000, Accepted 08 Feb 2001, Published online: 06 Aug 2009
 

Abstract

Although the biological factors which regulate tendon homeostasis are poorly understood, recent evidence suggests that Growth and Differentiation Factor-5 (GDF-5) may play a role in this important process. The purpose of this study was to investigate the effect of GDF-5 deficiency on mouse tail tendon using the brachypodism mouse model. We hypothesized that GDF-5 deficient tail tendon would exhibit altered composition, ultrastructure, and biome-chanical behavior when compared to heterozygous control littermates. Mutant tail tendons did not display any compositional differences in sulfated glycosaminoglycans (GAG/DNA), collagen (hydroxyproline/DNA), or levels of fibromodulin, decorin, or lumican. However, GDF-5 deficiency did result in a 17% increase in the proportion of medium diameter (100–225 nm) collagen fibrils in tail tendon (at the expense of larger fibrils) when compared to controls (p < 0.05). Also, mutants exhibited a trend toward an increase in irregularly-shaped polymorphic fibrils (33% more, p > 0.05). While GDF-5 deficient tendon fascicles did not demonstrate any significant differences in quasistatic biomechanical properties, mutant fascicles relaxed 11 % more slowly than control tendons during time-dependent stress-relaxation tests (p < 0.05). We hypothesize that this subtle alteration in time-dependent mechanical behavior is most-likely due to the increased prevalence of irregularly shaped type I collagen fibrils in the mutant tail tendons. These findings provide additional evidence to support the conclusion that GDF-5 may play a role in tendon homeostasis in mice.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.