1,947
Views
146
CrossRef citations to date
0
Altmetric
Review

Molecular and structural mapping of collagen fibril interactions

, &
Pages 2-17 | Received 29 Apr 2010, Accepted 22 Jul 2010, Published online: 23 Dec 2010
 

Abstract

The fibrous collagens form the structural basis of all mammalian connective tissues, including the vasculature, dermis, bones, tendons, cartilage, and those tissues that support organs such as the heart, kindneys, liver, and lungs. The helical structure of collagen has been extensively studied but in addition to its helical character, its molecular packing arrangement (in its aggregated or fibrillar form) and the presence of specific amino acid sequences govern collagen's in vivo functions. Collagen's molecular packing arrangement helps control cellular communication, attachment and movement, and conveys its tissue-specific biomechanical properties. Recent progress in understanding collagen's molecular packing, fibrillar structure, domain organization, and extracellular matrix (ECM) interactions in light of X-ray fiber diffraction data provides significant new insights into how the ECM is organized and functions. In this review, the hierarchy of fibrillar collagen structure is discussed in the context of how this organization affects ECM–“ligand” interactions, with specific attention to collagenolysis, integrins, fibronection, glycoprotein VI receptor (GPVI), and proteoglycans (PG). Understanding the complex structure of collagen and its attached ligands should provide new insights into tissue growth, development, regeneration, and disease.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.