503
Views
46
CrossRef citations to date
0
Altmetric
Research Article

Increased Macroautophagy in the Pathological Process of Intervertebral Disc Degeneration in Rats

, , , , , & show all
Pages 22-28 | Received 21 Apr 2012, Accepted 23 Jul 2012, Published online: 23 Aug 2012
 

Abstract

Objective: Macroautophagy increases with age in rat intervertebral discs; however, the effect of macroautophagy on the process of intervertebral disc degeneration (IVDD) is still unclear. The aim of this study was to examine the presence of autophagosome, as well as the levels of Beclin-1 and LC3 proteins, in vivo. Additionally, in vitro evidence of macroautophagy and GRP78 and GADD153 protein levels were investigated to explore the mechanism of macroautophagy in the process of IVDD.

Methods: Male Sprague–Dawley rats, aged 2 months, were randomly divided into six groups (three control and three model groups, n = 8 per group). At the 6-, 12-, and 18-week time points, autophagosomes in nucleus pulposus cells were detected with transmission electron microscope (TEM). Expression of Beclin-1 and LC3 protein levels within intervertebral disc was detected using Western blotting analysis. Then, the rat annulus fibrosus cells were isolated and cultured with Earle’s balanced salt solution. At 1, 2, and 3 hr of culture, autophagosomes were detected using monodansylcadaverine assay, and LC3, Beclin-1, GRP78, and GADD153 protein levels were detected using Western blotting analysis.

Results: Transmission electron microscopy revealed autophagosomes within nucleus pulposus cells in both the control and model groups. At 6-, 12-, and 18-week posttreatments, the levels of Beclin-1 and the LC3-II/LC3-I protein ratio in the model groups were higher than those in the control groups (p < 0.05). Compared with the control rats, amino acid starvation increased the number of monodansylcadaverine-positive cells and the LC3-II/LC3-I protein ratio in the model rats. Moreover, the in vitro levels of Beclin-1, GRP78, and GADD153 proteins were increased with the prolongation of amino acid starvation (p < 0.05).

Conclusions: Macroautophagy was present and was associated with increased pathological process of IVDD in rats. Macroautophagy of intervertebral disc cells is possibly secondary to endoplasmic reticulum stress.

Acknowledgments

This work was supported by grants from the National Natural Science Foundation of China (no. 81101385), the New Teacher’s Doctoral Fund of Ministry of Education of China (no. 20090171120077), the Natural Science Foundation of Guangdong Province, China (no. 10151008901000084), and the Science and Technology Planning Project of Guangdong Province, China (nos. 2008B060600059 and 2009B060700097).

Declaration of interest

The authors report no conflicts of interest. The authors alone are responsible for the content and writing of the paper.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.