199
Views
32
CrossRef citations to date
0
Altmetric
Original Research Articles

Maintenance of a bone collagen phenotype by osteoblast-like cells in 3D periodic porous titanium (Ti-6Al-4 V) structures fabricated by selective electron beam melting

, , , &
Pages 351-360 | Received 08 Apr 2013, Accepted 03 Jul 2013, Published online: 30 Sep 2013
 

Abstract

Regular 3D periodic porous Ti-6Al-4 V structures were fabricated by the selective electron beam melting method (EBM) over a range of relative densities (0.17–0.40) and pore sizes (500–1500 µm). Structures were seeded with human osteoblast-like cells (SAOS-2) and cultured for four weeks. Cells multiplied within these structures and extracellular matrix collagen content increased. Type I and type V collagens typically synthesized by osteoblasts were deposited in the newly formed matrix with time in culture. High magnification scanning electron microscopy revealed cells attached to surfaces on the interior of the structures with an increasingly fibrous matrix. The in-vitro results demonstrate that the novel EBM-processed porous structures, designed to address the effect of stress-shielding, are conducive to osteoblast attachment, proliferation and deposition of a collagenous matrix characteristic of bone.

Acknowledgements

The authors thank Lammy Kim and Alice Ko for their expert technical assistance.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.