149
Views
4
CrossRef citations to date
0
Altmetric
Research Article

Uphill running does not exacerbate collagenase-induced pathological changes in the Achilles tendon of rats selectively bred for high-capacity running

, , , , , , & show all
Pages 386-393 | Received 22 Jul 2013, Accepted 20 Sep 2013, Published online: 23 Sep 2013
 

Abstract

The Achilles tendon is a frequent site for degeneration, and advanced understanding of this pathology requires an animal model that replicates the human condition. The aim of this study was to explore whether intratendinous collagenase injection combined with treadmill running created a pathology in the rat Achilles tendon consistent with human Achilles tendinosis. Collagenase was injected into one Achilles tendon of 88 high-capacity running (HCR) rats, which were randomized into treadmill running and cage control groups. Running animals ran at speeds up to 30 m/min on a treadmill at a 15° incline for up to 1 h/d, 5 d/week for 4 or 10 weeks. Cage control animals maintained cage activity. Collagenase induced molecular, histopathological and mechanical changes within the Achilles tendon at 4 weeks. The mechanical changes persisted at 10 weeks; however, the histopathological and majority of the molecular changes were no longer present at 10 weeks. Treadmill running had minimal effect and did not exacerbate the collagenase-induced changes as there were no statistical interactions between the interventions. These data suggest combined intratendinous collagenase injection and treadmill running does not create pathology within the Achilles tendon of rats selectively bred for HCR that is consistent with human Achilles tendinosis.

Acknowledgements

We acknowledge the expert care of the rat colony provided by Molly Kalahar and Lori Gilligan. Contact L. G. K. ([email protected]) or S. L. B. ([email protected]) for information on the LCR and HCR rats: these rat models are maintained as an international collaborative resource at the University of Michigan, Ann Arbor, MI.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.