389
Views
26
CrossRef citations to date
0
Altmetric
Articles

Parthenolide inhibits pro-inflammatory cytokine production and exhibits protective effects on progression of collagen-induced arthritis in a rat model

, , , , , , , & show all
Pages 182-191 | Accepted 20 Jun 2014, Published online: 02 Dec 2014
 

Abstract

Objectives: Progressive destruction of synovial joint cartilage and bone occurs in pathological conditions such as rheumatoid arthritis (RA) because of the overproduction of pro-inflammatory cytokines and activation of nuclear factor kappa B (NF-κB). Through the screening of NF-κB inhibitors by a luciferase reporter gene assay, we identified parthenolide (PAR) as the most potent NF-κB inhibitor, among several PAR analogue compounds. This study was undertaken to determine whether PAR inhibits pro-inflammatory cytokine production, cartilage degradation, and inflammatory arthritis.

Method: The mRNA levels of pro-inflammatory cytokines were examined by real-time polymerase chain reaction (PCR). Proteoglycan content and release were determined by measuring glycosaminoglycan (GAG) levels using the dimethylmethylene blue (DMMB) dye-binding assay. The potential role of PAR in treatment of arthritis was studied using a collagen-induced arthritis (CIA) model.

Results: We established that PAR, as a prototype compound, suppressed lipopolysaccharide (LPS)- and tumour necrosis factor (TNF)-α-induced increases in matrix metalloproteinase (MMP)-1, MMP-3, inducible nitric oxide synthase (iNOS), and interleukin (IL)-1β mRNA in chondrocytes. In addition, PAR prevented proteoglycan degradation triggered by pro-inflammatory cytokines. PAR treatment at the onset of CIA symptoms significantly reduced synovitis, inflammation, and pannus formation scores. Reduced synovial inflammation after PAR treatment was also reflected in significantly less bone erosion and cartilage damage.

Conclusions: These data indicate a protective effect of PAR on the catabolic insults of pro-inflammatory cytokines on chondrocyte metabolism and GAG release in vitro and in CIA. PAR had anti-inflammatory and structure-modifying effects on experimental arthritis, suggesting that PAR may be useful as a potential alternative or adjunct therapy for inflammatory arthritis.

Acknowledgements

We acknowledge the excellent animal care and assistance by J Dickens and N McGregor, expert histology by I Poulton and pQCT analysis by E Walker. This work was supported by National Health and Medical Research Council (NHMRC) Project Grant 247909 to NAS and ER. This work was funded in part by NHMRC of Australia, Western Australia Medical and Health Research Infrastructure Fund, University of Western Australia Research Collaboration Awards, and a grant from the National Natural Science Foundation of China (NSFC, no. 81228013). Dr Q. Liu is a visiting scholar to The University of Western Australia sponsored by Guangxi Medical University.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.