137
Views
3
CrossRef citations to date
0
Altmetric
Research Article

RPCA-based detection and quantification of motion artifacts in ECG signals

, , &
Pages 56-60 | Received 24 May 2012, Accepted 05 Sep 2012, Published online: 08 Dec 2012
 

Abstract

In this paper, a recursive principal component analysis (RPCA)-based algorithm is applied for detecting and quantifying the motion artifact episodes encountered in an ECG signal. The motion artifact signal is synthesized by low-pass filtering a random noise signal with different spectral ranges of LPF (low pass filter): 0–5 Hz, 0–10 Hz, 0–15 Hz and 0–20 Hz. Further, the analysis of the algorithm is carried out for different values of SNR levels and forgetting factors (α) of an RPCA algorithm. The algorithm derives an error signal, wherever a motion artifact episode (noise) is present in the entire ECG signal with 100% accuracy. The RPCA error magnitude is almost zero for the clean signal portion and considerably high wherever the motion artifacts (noisy episodes) are encountered in the ECG signals. Further, the general trend of the algorithm is to produce a smaller magnitude of error for higher SNR (i.e. low level of noise) and vice versa. The quantification of the RPCA algorithm has been made by applying it over 25 ECG data-sets of different morphologies and genres with three different values of SNRs for each forgetting factor and for each of four spectral ranges.

Acknowledgements

The authors would like to thank Charutar Vidyamandal, Vallabh Vidyanagar, India and Sophisticated Instrumentation Centre for Advanced Research and Testing (SICART), Vallabh Vidyanagar, India for their support provided during this work.

Declaration of interest: The authors report no conflicts of interest.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.