710
Views
145
CrossRef citations to date
0
Altmetric
Review Article

Metabolic pathways of trichothecenes

, , , &
Pages 250-267 | Received 15 Apr 2009, Accepted 16 Jun 2009, Published online: 19 Apr 2010
 

Abstract

Trichothecenes are a group of mycotoxins mainly produced by the fungi of Fusarium genus. Consumers are particularly concerned over the toxicity and food safety of trichothecenes and their metabolites from food-producing animals. The metabolism of T-2 toxin, deoxynivalenol (DON), nivalenol (NIV), fusarenon-X (FX), diacetoxyscirpenol (DAS), 3-acetyldeoxy-nivalenol (3-aDON), and 15-acetyldeoxynivalenol (15-aDON) in rodents, swine, ruminants, poultry, and humans are reviewed in this article. Metabolic pathways of these mycotoxins are very different. The major metabolic pathways of T-2 toxin in animals are hydrolysis, hydroxylation, de-epoxidation, and conjugation. After being transformed to HT-2 toxin, it undergoes further hydroxylation at C-3’ to yield 3’-hydroxy-HT-2 toxin, which is considered as an activation pathway, whereas transformation from T-2 to T-2 tetraol is an inactivation pathway in animals. The typical metabolites of T-2 toxin in animals are HT-2 toxin, T-2 triol, T-2 tetraol, neosolaniol (NEO), 3’-hydroxy-HT-2, and 3’-hydroxy-T-2, whereas HT-2 toxin is the main metabolite in humans. De-epoxidation is an important pathway for detoxification in animals. De-epoxy products, DOM-1, and de-epoxy-NIV are the main metabolites of DON and NIV in most animals, respectively. However, the two metabolites are not found in humans. Deacetyl can occur rapidly on the acetyl derivatives, 3-aDON, 15-aDON, and FX. DAS is metabolized in animals to 15-monoacetoxyscirpenol (15-MAS) via C-4 deacetylation and then transformed to scirpentriol (SCP) via C-15 deacetylation. Finally, the epoxy is lost, yielding de-epoxy-SCP. De-epoxy-15-MAS is also the main metabolite of DAS. 15-MAS is the main metabolite in human skin. The review on the metabolism of trichothecenes will help one to well understand the fate of these toxins’ future in animals and humans, as well as provide basic information for the risk assessment of them for food safety.

Acknowledgment

This work was financially supported by National Basic Research Program of China (973 program; Grant no. 2009CB118800).

Declaration of interest: The authors report no conflicts of interest. The authors alone are responsible for the content and writing of this article.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.