332
Views
26
CrossRef citations to date
0
Altmetric
Original Article

Development and evaluation of injection-molded sustained-release tablets containing ethylcellulose and polyethylene oxide

, , , , , & show all
Pages 149-159 | Received 06 Jan 2010, Accepted 31 May 2010, Published online: 08 Jul 2010
 

Abstract

Purpose: It was the aim of the present study to develop sustained-release matrix tablets by means of injection molding of ethylcellulose (EC) and polyethylene oxide (PEO) mixtures and to evaluate the influence of process temperature, matrix composition, and viscosity grade of EC and PEO on processability and drug release. Methods: Formulations consisting of metoprolol tartrate (MPT, concentration: 30%), EC plasticized by dibutyl sebacate, and PEO were extruded and consequently injection molded into tablets. The influence of process temperature (120°C and 140°C), matrix composition, viscosity grade of EC (4, 10, 20, 45, and 100 mPa·s) and PEO (7 × 106, 1 × 106, and 1 × 105 Mw) on processability and drug release was determined. Results: Formulations consisting of 70% EC and 30% MPT showed incomplete drug release, whereas drug release was too fast for formulations without EC. Higher PEO concentrations increased drug release. Formulations containing 30% metoprolol, EC, and different concentrations of PEO showed first-order release rates with limited burst release. Drug release from direct compressed tablets showed faster drug release rates compared to injection-molded formulations. There was no clear relationship between the molecular weight of EC and drug release. The melting endotherm (113.9°C) of MPT observed in the differential scanning calorimeter thermogram of the tablets indicated that a solid dispersion was formed which was confirmed by X-ray diffractogram. X-ray tomography demonstrated a difference in pore structure between tablets processed at 120°C and 140°C. Conclusion: It was concluded that injection molding can be applied successfully to develop sustained-release PEO/EC matrix tablets.

Acknowledgments

The authors would like to thank Pharm. L. De Boom for her valuable assistance during the performance of the experiments.

Declaration of interest

The authors report no conflicts of interest. The authors alone are responsible for the content and writing of this paper.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.