253
Views
9
CrossRef citations to date
0
Altmetric
Research Article

Dynamic electrostatic charge of lactose-salbutamol sulphate powder blends dispersed from a Cyclohaler®

, &
Pages 1365-1375 | Received 22 Nov 2010, Accepted 28 Mar 2011, Published online: 10 May 2011
 

Abstract

Context: Electrostatic forces have been claimed to be a mechanism for aerosol deposition in the lungs. However, the extent of its influence on aerosol performance is not clear, particularly for carrier-drug formulations.

Objectives: To prepare lactose-salbutamol powder blends, varying in blend ratio, and identify any relationships between salbutamol dose, electrostatic characteristics and in vitro aerosol performance.

Methods: Decanted lactose and micronized salbutamol sulfate was mixed to produce five blends (equivalent to 50, 100, 200, 300 and 400 µg salbutamol per 33 mg of powder). 33 ± 1 mg of a blend was loaded into a Cyclohaler™ and dispersed into the electrical Next Generation Impactor (eNGI) at an air flow rate of 60 L/min. This was conducted in triplicate for all five lactose-salbutamol blends.

Results: Fine particle fraction increased with salbutamol dose, from 5.89 ± 1.42 to 21.35 ± 2.91%. Specific charge (charge divided by mass) distributions for each blend were greatest in magnitude for the 50 µg blend and similar in magnitude between all other blends. However, in eNGI Stage 1 (>8.06 µm), specific charge decreased from 100 µg (−170.4 ± 45.8 pC/µg) to 400 µg (−10.0 ± 9.1 pC/µg).

Conclusions: The improvement in fine particle fraction with increased salbutamol dose was indicative of fine drug binding to high and low energy sites on the lactose carrier surface. This finding was supported by electrostatic charge results, but the aerosol charge itself was not found to influence aerosol performance by electrostatic forces.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.