463
Views
13
CrossRef citations to date
0
Altmetric
Research Article

A strategy for reducing particulate contamination on opening glass ampoules and development of evaluation methods for its application

, , &
Pages 1394-1401 | Received 18 Jan 2011, Accepted 05 Apr 2011, Published online: 27 Jun 2011
 

Abstract

A single-dose glass ampoule was developed for ease of administration. When glass ampoules are opened, resulting in contamination by particulate matter. Reducing its contamination may minimize the risk in patients due to particulates. This study reports on an attempt to reduce insoluble particulate contamination by developing methods for the precise measurement of this. A vacuum machine (VM) was used to reduce the level of insoluble particulate contamination, and a microscopy, scanning electron microscopy-energy dispersive X-ray spectrometer (SEM-EDS) and inductively coupled plasma-atomic emission spectrometer (ICP-AES) were used to evaluate the level of reduction. The method permitted the insoluble particle content to be reduced by up to 87.8 and 89.3% after opening 1 and 2 mL-ampoules, respectively. The morphology of the glass particulate contaminants was very sharp and rough, a condition that can be harmful to human health. The total weight of glass particles in the opened ampoules was determined to be 104 ± 72.9 µg and 30.5 ± 1.00 µg after opening 1 and 2 mL-ampoules when the VM was operated at highest power. The total weights were reduced to 53.6 and 50.6%, respectively for 1 and 2 mL-ampoules, compared to opening by hand. The loss of ampoule contents on opening by the VM was 6.50 and 4.67% for 1 and 2 mL-ampoules, respectively. As a result, the VM efficiently reduced glass particulate contamination and the evaluation methods used were appropriate for quantifying these levels of contamination.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.