667
Views
61
CrossRef citations to date
0
Altmetric
Research Article

Preparation of Coenzyme Q10 nanostructured lipid carriers for epidermal targeting with high-pressure microfluidics technique

, , , , , , , , & show all
Pages 20-28 | Received 24 Oct 2011, Accepted 14 Dec 2011, Published online: 02 Nov 2012
 

Abstract

Objective: The objective of this work was to prepare coenzyme Q10 loaded nanostructured lipid carriers (Q10-NLC) and evaluate its epidermal targeting effect.

Methods: Q10-NLC was prepared by high-pressure microfluidics technique. Formulations and preparation parameters were optimized with response surface design. Q10-NLC was characterized by PCS, TEM, DSC and PXRD. The penetration of Q10 from the Q10-NLC formulations through skins and into skins were evaluated in vitro using Franz diffusion cells fitted with SD rat skins. In vitro release, long-term stability and light stability were also evaluated.

Results: The results showed that the concentration of solid lipid and emulsifier in formulation had a significant influence on particle size. The optimized preparation parameters were magnetic stirring for 20 min, high stirring at 8000 rpm for 1 min and high-pressure microfluidics at 1200 bar for three cycles. The size of Q10-NLC prepared by optimized formulation and parameters was (151.7 ± 2.31) nm, polydispersity (PDI) 0.144, ζ potential was (−44.1 ± 1.68) mV, drug loading 2.51%, encapsulation efficiency 100%. In vitro release study, Q10-NLC showed fast release during the first 3 hours and prolonged release afterwards. In vitro skin permeation study, the accumulative uptake of Q10 in epidermal of Q10-NLC was 10.11 times over Q10 emulsion. After exposure to day light for 24 hours, the amount of Q10 in Q10-NLC decreased only 5.59%, while in Q10 emulsion decreased 24.61% and Q10-ethanol solution 49.74%.

Conclusion: Q10-NLC exhibited a significant epidermal targeting effect, which was proved to be a promising carrier for topical delivery of Q10.

Acknowledgements

The authors would like to thank the Analytical and Testing Center of Huazhong University of Science and Technology for the TEM, DSC and PXRD analysis.

Declaration of interest

This work was financially supported by National Basic Research Program of China (973 Program, 2011CB933103), National High Technology Research and Development Program of China (863 Program), and Natural Science Foundation of China (NSFC, 31170960). The authors report no declarations of interest.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.