1,339
Views
46
CrossRef citations to date
0
Altmetric
Review Article

Recent advancements in mechanical reduction methods: particulate systems

& , III
Pages 289-300 | Received 14 Feb 2013, Accepted 17 Jul 2013, Published online: 30 Aug 2013
 

Abstract

The screening of new active pharmaceutical ingredients (APIs) has become more streamlined and as a result the number of new drugs in the pipeline is steadily increasing. However, a major limiting factor of new API approval and market introduction is the low solubility associated with a large percentage of these new drugs. While many modification strategies have been studied to improve solubility such as salt formation and addition of cosolvents, most provide only marginal success and have severe disadvantages. One of the most successful methods to date is the mechanical reduction of drug particle size, inherently increasing the surface area of the particles and, as described by the Noyes-Whitney equation, the dissolution rate. Drug micronization has been the gold standard to achieve these improvements; however, the extremely low solubility of some new chemical entities is not significantly affected by size reduction in this range. A reduction in size to the nanometric scale is necessary. Bottom-up and top-down techniques are utilized to produce drug crystals in this size range; however, as discussed in this review, top-down approaches have provided greater enhancements in drug usability on the industrial scale. The six FDA approved products that all exploit top-down approaches confirm this. In this review, the advantages and disadvantages of both approaches will be discussed in addition to specific top-down techniques and the improvements they contribute to the pharmaceutical field.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.