98
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Drug dispersion degree and drug dissolution rate in Hybrane S1200-based instant-release matricial particles prepared by hot melt extrusion

, &
Pages 1000-1005 | Received 18 Dec 2013, Accepted 05 May 2014, Published online: 30 May 2014
 

Abstract

The objective of this study is to evaluate the dissolution of a poorly soluble drug (prednisolone) from different sized matricial particles (from <250 to >1500 µm) with two drug contents (10% or 20%) obtained by hot melt extrusion using the hyperbranched polyesteramide Hybrane S1200 (water-soluble and with a Tg of 45 °C) as the carrier. X-ray diffraction, differential scanning calorimetry and SEM studies permit us to conclude that in 10% prednisolone extrudate, the drug is mainly dispersed within the carrier, whereas in those containing 20% an important fraction of the drug remains in a crystalline state and is accumulated on the surface of the extrudates. On particles proceeding from 10% drug extrudate, the drug dissolution rate is very high and slightly dependant on particle size and in all cases, higher than the pure micronized drug. However, on particles proceeding from 20% prednisolone extrudate particle size have a major effect on drug dissolution rate, attributable to higher proportions of crystalline drug accumulated on the surface, hindering polymer dissolution. Thus, the reduction of the particle size after extrudate grinding creates new surfaces from inside, that leads to strong increments on prednisolone dissolution rate, and becomes higher than the pure micronized drug one when the particle size is <250 µm.

Declaration of interest

The authors report no declarations of interest. This work was supported by grants 07CSA006203PR from Xunta de Galicia and SAF 2012-39878-C02-01 from M° de Economía y Competitividad (Spain).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.