669
Views
74
CrossRef citations to date
0
Altmetric
Research Article

Design, characterization, and evaluation of intranasal delivery of ropinirole-loaded mucoadhesive nanoparticles for brain targeting

, , , , , , & show all
Pages 1674-1681 | Received 03 Jul 2014, Accepted 11 Nov 2014, Published online: 11 Dec 2014
 

Abstract

Context: Parkinson disease (PD) is a common, progressive neurodegenerative disorder, characterized by marked depletion of striatal dopamine and degeneration of dopaminergic neurons in the substantia nigra.

Objective: The purpose of the present study was to investigate the possibility of targeting an anti-Parkinson’s drug ropinirole (RH) to the brain using polymeric nanoparticles.

Materials and methods: Ropinirole hydrochloride (RH)-loaded chitosan nanoparticles (CSNPs) were prepared by an ionic gelation method. The RH-CSNPs were characterized for particle size, polydispersity index (PDI), zeta potential, loading capacity, entrapment efficiency in vitro release study, and in vivo distribution after intranasal administration.

Results and discussion: The RH-CSNPs showed sustained release profiles for up to 18 h. The RH concentrations (% Radioactivity/g) in the brain following intranasal administration (i.n.) of RH-CSNPs were found to be significantly higher at all the time points compared with RH solution. The concentration of RH was highest in the liver (7.210 ± 0.52), followed by kidneys (6.862 ± 0.62), intestine (4.862 ± 0.45), and lungs (4.640 ± 0.92) in rats following i.n. administration of RH-CSNPs. Gamma scintigraphy imaging in rats was performed to ascertain the localization of drug in the brain following intranasal administration of formulations. The brain/blood ratios obtained (0.251 ± 0.09 and 0.386 ± 0.57 of RH (i.n.) and RH-CSNPs (i.n.), respectively) at 0.5 h are indicative of direct nose to brain transport, bypassing the blood–brain barrier (BBB).

Conclusion: The novel formulation showed the superiority of nose to brain delivery of RH using mucoadhesive nanoparticles compared with other delivery routes reported earlier.

Acknowledgements

The authors thank Professor Brian L. Furman (University of Strathclyde, Glasgow, UK) for critical reading of the manuscript and English editing.

Declaration of interest

The authors report no conflict of interest. The authors are responsible for the content and writing of the article. The authors are thankful to All India Council of Technical Education (AICTE), New Delhi, India for providing financial assistance to project.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.