17
Views
8
CrossRef citations to date
0
Altmetric
Research Article

Preparation of Acetaminophen Microcapsules by Coaservation-Phase Separation Method

&
Pages 587-601 | Published online: 20 Oct 2008
 

Abstract

In this study, it was aimed to prepare prolonged action microcapsules of acetaminophen with short biological half-life by a non-solvent addition method which is one of the conservation-phase separation techniques.

For this purpose, the three different particle size ranges of acetaminophen (0.088–0.177 mn, 0.250–0.354 mn, 0.420–0.500 mn) were used. The solution of polyisobuthylene in cyclohexane as a non-solvent and Eudragit RS and Eudragit RL as coating polymers were also used. The prepared mi crosapsules were compressed by a hydraulic press using different types of direct tableting agents such as Ludipress, Avicel PH 101 and Lactose EP D 30. Dissolution rates of each tablet containing 160 mg of microencapsulated acetaminophen were examined by continuous flow-through cell method

The results of this study showed that the release rate of drug from microcapsules prepared with Eudragit RS was lower than that of microcapsules prepared with Eudragit RL. However different particle size ranges of drug didn't affect significantly the release rate; but different types of direct tableting agents were effective on the release rate of drug.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.