9
Views
16
CrossRef citations to date
0
Altmetric
Original Article

Responses of Spinothalamic Tract Cells in the Cat Cervical Spinal Cord to Innocuous and Graded Noxious Stimuli

, &
Pages 339-358 | Published online: 10 Jul 2009
 

Abstract

The response properties of spinothalamic tract (STT) cells in the dorsal horn of the cervical spinal cord were examined in chloralose-anesthetized cats. The activity of 56 STT cells located in laminae IV-VI was studied, with most activity isolated in the lateral part of the dorsal horn. The level of background activity in STT cells was low (mean = 1.2 impulses/sec; n = 26). Conduction velocity estimates for STT axons ranged from 9 to 76 m/sec (mean = 38 m/sec; n = 56) and were not correlated with the recording site in the spinal cord. Most cells were antidromically activated from an electrode in the medial part of the posterior group of nuclei in the thalamus. Excitatory receptive fields were ipsilateral to the recording site, and for 38 of 40 neurons were confined to the forelimb. Although receptive fields were often restricted to part of the paw, they did not include glabrous skin.

Among 31 cells classified, four groups were identified: low-threshold (LT) cells (13%) responded to pressure and brushing of the skin; high-threshold (HT) cells (13%) responded only to noxious pinching or squeezing of the skin; wide-dynamic-range (WDR) cells (58%) responded to innocuous mechanical stimuli but had a greater response to noxious stimuli; deep (D) cells (16%) responded to manipulation of subcutaneous tissues such as muscle. Heat stimuli 30 sec in duration, in the range of 43-55° C., were applied to the receptive fields of 14 neurons that included representatives from all three groups with cutaneous input. Nine neurons responded to heat with thresholds that ranged from 47° to 55° C (mean = 51° C). The responses of these nine STT cells increased with increasing stimulus intensity in the noxious range.

In the cat cervical dorsal horn, STT cells can signal the occurrence of noxious stimuli on the body surface, and, judging by the sizes of their peripheral receptive fields, are capable of signaling precise information about the location of the damage. Furthermore, some cells are able to signal the intensity of a noxious heating pulse.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.