10
Views
12
CrossRef citations to date
0
Altmetric
Original Article

Relations between Stimulus Force, Skin Displacement, and Discharge Characteristics of Slowly Adapting Type I Cutaneous Mechanoreceptors in Glabrous Skin of Squirrel Monkey Hand

&
Pages 111-125 | Published online: 10 Jul 2009
 

Abstract

(1) The contributions of viscoelastic properties of squirrel monkey glabrous skin to slowly adapting Type I (SAI) mechanore-ceptive afferent fiber discharge were examined in the present study. Individual fibers of the median and ulnar nerves were isolated by microdissection in six monkeys anesthetized with pentobarbital sodium. Utilizing mechanical stimulation and data analysis techniques identical to those of a previous study of raccoon glabrous skin and its mechanoreceptors (Pubols, 1982a; Pubols and Maliniak, 1984), we studied and compared responses to punctate mechanical stimuli controlled with respect to force or displacement. (2) Squirrel monkey glabrous skin was found to be more compliant than raccoon glabrous skin, in that a given force applied to either a digital or a palmar skin pad produced a greater displacement of squirrel monkey skin. Skin displacement increased approximately linearly with increasing forces at the beginning of static stimulation, but over time (at least up to 20 sec), the relationship became negatively accelerated. (3) Absolute-force thresholds of individual SAI units were significantly lower in squirrel monkey (mean = 122 mg, range = 48-340 mg) than in raccoon (mean =484 mg, range = 70-1,290 mg). However, absolute-displacement thresholds were insignificantly lower (squirrel monkey: mean = 17.24 μm, range = 5-30μ raccoon: mean = 30 μm, range = 5-185 μm). (4) Application of suprathreshold forces (range = 1-20 g) and displacements (range = 500-1,000 μm) revealed greater interunit variability in response to maintained stimulation than previously found in raccoon. In 8 out of 15 fibers, the rate of adaptation was significantly greater during constant-displacement than during constant-force stimulation; in 4 cases there was no significant difference; and in 3 cases the rate of adaptation was significantly greater during constant-force stimulation. (5) Potential sources of interunit variability include surface topography of the hand, properties of cutaneous and subcutaneous tissues in the vicinity of the receptor, and experimental variables such as stimulus amplitude and rate of stimulus onset. (6) It is suggested that both regional and species differences in functional properties of cutaneous mechanore-ceptors are more likely attributable to differences in mechanical properties of skin and subjacent tissues than to any inherent differences in receptor properties.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.