136
Views
61
CrossRef citations to date
0
Altmetric
Research Article

Bacterial Oxidation of Refractory Sulfide Ores for Gold Recovery

, &
Pages 133-155 | Published online: 27 Sep 2008
 

Abstract

The microbiological leaching of refractory sulfide ores (pyrite, arsenopyrite) for recovery of gold is reviewed in this article. The underlying physiological, biochemical, and genetic fundamentals of the bacteria involved (Thiobacillus and Sulfolobus spp.) are complex and have yet to be elucidated in depth. The chemistry of acid and biological leaching of pyrite and arsenopyrite minerals is also complex, and many of the individual reactions are not known in detail. Bacterial leaching is discussed in relation to chemical speciation at acid pH values. Attempts to develop models for a better understanding of bioleaching processes are summarized. The importance of pH, redox potential, temperature, sulfur balance, and toxic metals is evaluated for optimizing conditions for bacterial activity. Gold is finely disseminated in refractory sulfide ores, thereby decreasing Au recoveries upon conventional cyanidation for gold dissolution. In the bioleaching process, bacteria remove the sulfide minerals by oxidative dissolution and thus expose Au to extraction with cyanide solution. Stirred tank reactors appear most suited for this biological leaching process. The overall oxidation of the sulfides is an important variable for gold recovery. Pilot- and commercial-scale bioleaching processes for gold-containing pyrite and arsenopyrite ores are reviewed. This application of mineral biotechnology competes favorably with pressure leaching and roasting processes, both of which are problematic and energy-intensive alternatives for pretreatment of auriferous pyrite/arsenopyrite ores.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.