Publication Cover
Chronobiology International
The Journal of Biological and Medical Rhythm Research
Volume 28, 2011 - Issue 2
376
Views
24
CrossRef citations to date
0
Altmetric
Research Article

The Effects of Thoracic and Cervical Spinal Cord Lesions on the Circadian Rhythm of Core Body Temperature

, , , , &
Pages 146-154 | Received 22 Jul 2010, Accepted 08 Nov 2010, Published online: 13 Jan 2011
 

Abstract

Individuals with a spinal cord injury (SCI) have compromised afferent and efferent information below the lesion. Intact afferent information regarding skin temperature and the ability to regulate skin blood flow lead to an altered heat balance, which may impact the circadian variation in core body temperature (Tcore) and sleep-wake cycle. The authors assessed the circadian variation of Tcore in SCI individuals and able-bodied controls matched for the timing of the sleep-wake cycle. The authors examined subjects who had a high (cervical) or a low (thoracic) lesion. Intestinal Tcore (telemetry system) and physical activity (ambulatory activity monitor) levels were measured continuously and simultaneously in 8 tetraplegics, 7 paraplegics, and 8 able-bodied controls during one 24-h period of “normal” living. The regression slope between activity and Tcore was also calculated for each 2-h bin. Circadian rhythm parameters were estimated with partial Fourier time-series analysis, and groups were compared with general linear models, adjusted for the influence of individual wake-time. The (mean ± SD) dominant period length for controls, paraplegics, and tetraplegics were 24.4 ± 5.4 h, 22.5 ± 5.0 h, and 16.5 ± 5.1 h, respectively (p = .02). A significantly more pronounced 8-h harmonic was found for the variation in Tcore of SCI individuals (p = .05). Tetraplegics showed the highest nocturnal mean Tcore (p = .005), a 5-h phase-advanced circadian trough time (p = .04), and more variable relationships between physical activity and Tcore (p = .03). Taken together, tetraplegics demonstrate a pronounced disturbance of the circadian variation of Tcore, whereas the variation of Tcore in paraplegics was comparable to able-bodied controls. (Author correspondence: [email protected])

ACKNOWLEDGMENTS

D.H.J.T. is financially supported by the Netherlands Heart Foundation (E. Dekker-stipend).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.