Publication Cover
Chronobiology International
The Journal of Biological and Medical Rhythm Research
Volume 31, 2014 - Issue 1
477
Views
21
CrossRef citations to date
0
Altmetric
Review Article

Pineal oscillator functioning in the chicken – Effect of photoperiod and melatonin

, , &
Pages 134-143 | Received 05 Jun 2013, Accepted 02 Aug 2013, Published online: 17 Oct 2013
 

Abstract

The avian pineal gland, apart from the hypothalamic master clock (suprachiasmatic nuclei, SCN) and retina, functions as an independent circadian oscillator, receiving external photic cues that it translates into the rhythmical synthesis of melatonin, a biochemical signal of darkness. Functional similarity to the mammalian SCN makes the avian pineal gland a convenient model for studies on biological clock mechanisms in general. Pineal melatonin is produced not only in a light-dependent manner but also remains under the control of the endogenous oscillator, while the possible involvement of melatonin in maintaining cyclic expression of the avian clock genes remains to be elucidated. The aim of the present study was to characterize the diurnal profiles of main clock genes transcription in the pineal glands of chickens exposed to continuous light (LL) and supplemented with exogenous melatonin. We hypothesized that rearing chickens from the day of hatch under LL conditions would evoke a functional pinealectomy, influencing, in turn, pineal clock function. To verify this hypothesis, we examined the diurnal transcriptional profiles of selected clock genes as well as the essential parameters of pineal gland function: transcription of the genes encoding arylalkylamine N-acetyltransferase (Aanat), a key enzyme in melatonin biosynthesis, and the melatonin receptor (Mel1c), along with the blood melatonin level. Chickens hatched in summer or winter were maintained under LD 16:8 and 8:16, corresponding to the respective photoperiods, as the seasonal control groups. Another set of chickens was kept in parallel under LL conditions and some were supplemented with melatonin to check the ability of exogenous hormone to antagonize the effects evoked by continuous light. Twelve-day-old chickens were sacrificed every 3 h over a 24-h period and the mRNAs of selected clock genes, Bmal1, Cry1, Per3, E4bp4, together with those of Aanat and Mel1c, were quantified in the isolated pineal glands. Our results indicate that the profiles of clock gene transcription are not dependent on the duration of the light phase, while LL conditions decrease the amplitude of diurnal changes, but do not abolish them entirely. Melatonin supplied in drinking water to the birds kept in LL seems to desynchronize transcription of the majority of clock genes in the summer, while in the winter, it restores the pattern, but not the diurnal rhythmicity. Rhythmic expression of Bmal1 appears to provide a direct link between the circadian clock and the melatonin output pathway, while the availability of cyclic melatonin is clearly involved in the canonical transcription pattern of Per3 in the chicken pineal gland. Regardless of the experimental conditions, a negative correlation was identified between the transcription of genes involved in melatonin biosynthesis (Aanat) and melatonin signal perception (Mel1c receptor).

Acknowledgments

The authors would like to thank Professor Michal Zeman from the Department of Animal Physiology and Ethology, Comenius University in Bratislava, Slovakia, and Professor Bogdan Lewczuk from Department of Histology and Embriology, Faculty of Veterinary Medicine, University of Warmia and Mazury, Olsztyn, Poland for their assistance in melatonin measurements. The authors also express their appreciation to Dr. Krystyna Zuzewicz from the Central Institute for Labour Protection in Warsaw, Poland for the assistance in statistical analysis. Dr. Seema Rai was a visiting scientist at the University of Warsaw, Poland, under the INSA-PAS Bilateral Exchange 2012 program.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.