Publication Cover
Chronobiology International
The Journal of Biological and Medical Rhythm Research
Volume 31, 2014 - Issue 5
482
Views
54
CrossRef citations to date
0
Altmetric
Research Article

CRY1 circadian gene variant interacts with carbohydrate intake for insulin resistance in two independent populations: Mediterranean and North American

, , , , , , & show all
Pages 660-667 | Received 12 Nov 2013, Accepted 20 Jan 2014, Published online: 18 Feb 2014
 

Abstract

Dysregulation in the circadian system induced by variants of clock genes has been associated with type 2 diabetes. Evidence for the role of cryptochromes, core components of the system, in regulating glucose homeostasis is not supported by CRY1 candidate gene association studies for diabetes and insulin resistance in human, suggesting possible dietary influences. The purpose of this study was to test for interactions between a CRY1 polymorphism, rs2287161, and carbohydrate intake on insulin resistance in two independent populations: a Mediterranean (n = 728) and an European origin North American population (n = 820). Linear regression interaction models were performed in two populations to test for gene–diet interactions on fasting insulin and glucose and two insulin-related traits, homeostasis model assessment of insulin resistance (HOMA-IR) and quantitative insulin sensitivity check index (QUICKI). In addition, fixed effects meta-analyses for these interactions were performed. Cohort-specific interaction analyses showed significant interactions between the CRY1 variant and dietary carbohydrates for insulin resistance in both populations (p < 0.05). Findings from the meta-analyses of carbohydrate–single nucleotide polymorphism interactions indicated that an increase in carbohydrate intake (% of energy intake) was associated with a significant increase in HOMA-IR (p = 0.011), fasting insulin (p = 0.007) and a decrease in QUICKI (p = 0.028), only among individuals homozygous for the minor C allele. This novel finding supports the link between the circadian system and glucose metabolism and suggests the importance this CRY1 locus in developing personalized nutrition programs aimed at reducing insulin resistance and diabetes risk.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.