Publication Cover
Chronobiology International
The Journal of Biological and Medical Rhythm Research
Volume 32, 2015 - Issue 2
334
Views
10
CrossRef citations to date
0
Altmetric
Original Article

Estimating photoreceptor excitations from spectral outputs of a personal light exposure measurement device

&
Pages 270-280 | Received 27 Jun 2014, Accepted 13 Sep 2014, Published online: 07 Oct 2014
 

Abstract

The intrinsic circadian clock requires photoentrainment to synchronize the 24-hour solar day. Therefore, light stimulation is an important component of chronobiological research. Currently, the chronobiological research field overwhelmingly uses photopic illuminance that is based on the luminous efficiency function, V(λ), to quantify light levels. However, recent discovery of intrinsically photosensitive retinal ganglion cells (ipRGCs), which are activated by self-contained melanopsin photopigment and also by inputs from rods and cones, makes light specification using a one-dimensional unit inadequate. Since the current understanding of how different photoreceptor inputs contribute to the circadian system through ipRGCs is limited, it is recommended to specify light in terms of the excitations of five photoreceptors (S-, M-, L-cones, rods and ipRGCs; Lucas et al., Citation2014). In the current study, we assessed whether the spectral outputs from a commercially available spectral watch (i.e. Actiwatch Spectrum) could be used to estimate photoreceptor excitations. Based on the color sensor spectral sensitivity functions from a previously published work, as well as from our measurements, we computed spectral outputs in the long-wavelength range (R), middle-wavelength range (G), short-wavelength range (B) and broadband range (W) under 52 CIE illuminants (25 daylight illuminants, 27 fluorescent lights). We also computed the photoreceptor excitations for each illuminant using human photoreceptor spectral sensitivity functions. Linear regression analyses indicated that the Actiwatch spectral outputs could predict photoreceptor excitations reliably, under the assumption of linear responses of the Actiwatch color sensors. In addition, R, G, B outputs could classify illuminant types (fluorescent versus daylight illuminants) satisfactorily. However, the assessment of actual Actiwatch recording under several testing light sources showed that the spectral outputs were subject to great non-linearity, leading to less accurate estimation of photoreceptor excitations. Based on our analyses, we recommend that each spectral watch should be calibrated to measure spectral sensitivity functions and linearization characteristics for each sensor to have an accurate estimation of photoreceptor excitations. The method we provided to estimate photoreceptor excitations from the outputs of spectral watches could be used for chronobiological studies that can tolerate an error in the range of 0.2–0.5 log units. Our method can be easily expanded to incorporate linearization functions to have more accurate estimations.

ACKNOWLEDGEMENTS

This study was supported by grants from NEI (R01-EY019651, DC), IBRO John G. Nicholls Research Fellowship (PAB), Cless Family Foundation, and UIC core grant for vision research P30-EY01792, Unrestricted Departmental Grant from the Research to Prevent Blindness. We thank Dr. Luke L. A. Price for providing their Actiwatch spectral sensitivity functions and Dr. Joao Linhares for providing the illuminant database.

DECLARATION OF INTEREST

The authors report no conflicts of interest. The authors alone are responsible for the content and writing of this article.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.