Publication Cover
Chronobiology International
The Journal of Biological and Medical Rhythm Research
Volume 16, 1999 - Issue 2
65
Views
28
CrossRef citations to date
0
Altmetric
Original Article

Effect of Ambient Temperature on the Orcadian Activity Rhythm in Common Marmosets, Callithrix J. Jacchus (Primates)

, &
Pages 149-161 | Received 13 Mar 1998, Accepted 21 Jul 1998, Published online: 07 Jul 2009
 

Abstract

Whereas the (zeitgeber) effect of ambient temperature Ta and temperature cycles TaC's on circadian rhythmicity has been well documented for heterofhermic mammals, inconsistent results have been obtained for strictly homeothermic species. Hence, it might be inferred that the susceptibility of the mammalian circadian timing system (CTS) to Ta and TaC's depends on the range of the animals' core and/or brain temperature rhythm. This hypothesis was tested in the common marmoset (Callithrix j. jacchus, n=12), a small diurnal primate with an amplitude in body temperature rhythm that is larger than for other homeothermic primates studied so far. Within the range 20-30°C, no systematic effects of constant Ta on most parameters of the marmosets' light-dark (LD)-entrained and free-running circadian activity rhythm (CAR) were found. Significant differences could be established in the average amount of activity per circadian cycle. It was highest at Ta 25°C (LD) and 20°C (light-light, LL) and most probably reflected a temperature-induced masking effect. A 24h trapezoidal TaC of 20:30°C entrained the free-running CAR in two of six marmosets and produced relative coordination in all others. Accordingly, in all animals tested, it had an effect on the CTS. In marmosets free running in LL at a Ta of 20°C or 30°C, 3h warm and cold pulses of 30°C and 20°C, respectively, produced neither systematic phase responses nor period responses of the CAR. So, there is no evidence of a phase-response mechanism underlying circadian entrainment. The results show that large-amplitude TaC's function as a weak zeitgeber for the marmosets' CTS. Since this zeitgeber effect is significantly larger than that found in owl monkeys, the results are consistent with the starting hypothesis that the zeitgeber effect of a given T,C on the mammalian CTS may be related to the amplitude of the species' core and/or brain temperature cycle.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.