53
Views
14
CrossRef citations to date
0
Altmetric
Original Article

Lipoprotein composition influences cholesteryl ester transfer in alcohol abusers

, &
Pages 316-322 | Received 19 Nov 1997, Accepted 21 Apr 1998, Published online: 28 Aug 2009
 

Abstract

Alcohol use is known to increase high-density lipoprotein (HDL) cholesterol, which is at least in part mediated by the alcohol-induced reduction in plasma cholesteryl ester transfer protein (CETP) activity and mass. We have shown that the high plasma HDL concentration reduces the CETP-mediated net mass transfer of cholesteryl esters from HDL to very-low-density lipoprotein (VLDL) and low-density lipoprotein (LDL), or even reverses the direction of transfer in plasma incubations. Therefore, we studied the effect of lipoprotein composition on lipid net mass transfers in 14 male alcohol abusers and nine male control subjects by incubating plasma for up to 2 h. The cholesteryl ester net mass transfer in the alcohol abusers was mainly predicted by the VLDL and LDL lipid composition in multiple linear regression, while the HDL composition was the main factor in the controls. The observed difference in the effect of the lipoprotein composition on cholesteryl ester net mass transfer support our previous finding in rabbits that CETP binding to lipoproteins may differ during ethanol oxidation. The results suggest that ethanol oxidation induces alterations which may affect the binding of CETP to lipoproteins.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.