2,249
Views
14
CrossRef citations to date
0
Altmetric
Laboratory Study

Ischemia/Reperfusion-Induced Renal Failure in Rats as a Model for Evaluating Cell Therapies

, , , &
Pages 1324-1332 | Received 28 Jun 2012, Accepted 21 Aug 2012, Published online: 03 Oct 2012
 

Abstract

Chronic renal failure is a devastating disease that leads to a multitude of complications. Cell therapy has emerged as a potential treatment modality for renal failure. However, efficacy testing on systemic renal function has been challenging due to the limited availability of reliable models that are fully characterized. In this study, we investigated the possibility of using renal ischemia/reperfusion (I/R) injury as a viable model for testing cell therapies. We examined functional and pathological changes in rat kidneys that were exposed to different ischemia times. Male Lewis rats were divided into five groups. Renal failure was induced by clamping both renal pedicles for combinations of 60, 75, and 90 min, followed by reperfusion. Age-matched healthy rats served as controls. Blood was collected at regular intervals for serum chemistry, and kidneys were harvested at the same intervals for histomorphological assessment. Serum creatinine levels of the animals with I/R injury increased significantly after 3 days and returned to normal levels at 4 weeks. Histologically, kidney tissue showed progressive glomerular and tubular deterioration with varying degrees of fibrosis. Animals exposed to 75- and 90-min ischemia combination times consistently generated more severe injury than the 60-min ischemia period. However, these groups resulted in a high mortality rate. A model in which one kidney is exposed to a shorter ischemia time (60 or 90 min) resulted in sustained renal damage with a lower mortality rate. This study shows that kidneys exposed to I/R result in renal tissue damage as well as decreased renal function. This model can be used to study both the short-term and longer-term effects of kidney disease by varying the length of the ischemic time. In particular, the use of longer ischemic times (75 and 90 min) could be used to study new therapies for acute renal disease, whereas shorter ischemic times (60 min) could be used to study therapies for chronic renal insufficiency.

ACKNOWLEDGMENTS

The authors thank Dr. Jennifer Olson for editorial assistance, and Kenneth Gyabaah and Adam Wilson for technical support.

Declaration of interest: Drs. Atala and Yoo served as consultants for Tengion, Inc. during the study period.

This work was supported by Tengion, Inc. through a sponsored research agreement.

Notes

Hung-Jen Wang and Adam Varner have contributed equally to this work.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.