219
Views
7
CrossRef citations to date
0
Altmetric
Research Article

B7-H4-Ig treatment of normal mice changes lymphocyte homeostasis and increases the potential of regulatory T cells

, , , &
Pages 505-513 | Received 11 Mar 2013, Accepted 29 May 2013, Published online: 10 Jul 2013
 

Abstract

Enteroantigens (eAgs) drive tolerogenic and inflammatory immune responses in the gut and are of importance for sustained immune homeostasis in colonic mucosa. Decline of regulatory activity in the gut mucosa might result in chronic colitis. B7-H4 is a co-inhibitory receptor expressed by professional antigen-presenting cells. By delivering signal 2 during T cell activation, it inhibits T cell proliferation and inflammation. In this study, we have used a newly developed B7-H4-Ig fusion protein and evaluated its effect on eAg-activated effector and regulatory T cells (Treg) in vitro and in vivo. T cells were recovered from the mesenteric lymph nodes (MLNs) of untreated or B7-H4-Ig-treated BALB/c mice. Treatment of cells in vitro did neither affect the proliferation of effector T cells nor the function of Tregs. In vivo, B7-H4 treatment increased the total number of MLN-derived CD4+ and CD8+ T cell subsets as well as the functional activity of MLN-derived Tregs, whereas the proliferative activity of eAg or alloantigen specific effector T cells was not influenced, although treatment resulted in less secretion of inflammatory cytokines and chemokines from these cells. B7-H4-Ig treatment of severe combined immune-deficient (SCID) mice undergoing T cell transfer colitis did not influence the course of disease probably reflecting the lack of Tregs in this model of chronic colitis. In conclusion, we show that treatment with B7-H4-Ig in vivo changes lymphocyte homeostasis and increases the regulatory potential in normal mice, but does not affect the course of disease development in SCID mice undergoing T cell transfer colitis.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.