Publication Cover
Inhalation Toxicology
International Forum for Respiratory Research
Volume 21, 2009 - Issue 13
364
Views
66
CrossRef citations to date
0
Altmetric
Research Article

Development of a physiologically based kinetic model for 99m-Technetium-labelled carbon nanoparticles inhaled by humans

, , , &
Pages 1099-1107 | Received 18 Nov 2008, Accepted 13 Jan 2009, Published online: 08 Oct 2009
 

Abstract

Particulate air pollution is associated with respiratory and cardiovascular morbidity and mortality. Recent studies investigated whether and to which extent inhaled ultrafine particles are able to translocate into the bloodstream in humans. However, their conclusions were conflicting. We developed a physiologically based kinetic model for 99mtechnetium-labelled carbon nanoparticles (Technegas). The model was designed to analyse imaging data. It includes different translocation rates and kinetics for free technetium, and small and large technetium-labelled particles. It was calibrated with data from an experiment designed to assess the fate of nanoparticles in humans after inhalation of Technegas. The data provided time courses of radioactivity in the liver, stomach, urine, and blood. Parameter estimation was performed in a Bayesian context with Markov chain Monte Carlo (MCMC) techniques. Our analysis points to a likely translocation of particle-bound technetium from lung to blood, at a rate about twofold lower than the transfer rate of free technetium. Notably, restricting the model so that only free technetium would have been able to reach blood circulation resulted in much poorer fits to the experimental data. The percentage of small particles able to translocate was estimated at 12.7% of total particles. The percentage of unbound technetium was estimated at 6.7% of total technetium. To our knowledge, our model is the first PBPK model able to use imaging data to describe the absorption and distribution of nanoparticles. We believe that our modeling approach using Bayesian and MCMC techniques provides a reasonable description on which to base further model refinement.

Acknowledgements

We thank two anonymous reviewers who greatly helped to improve the quality of the article.

Declaration of interest: This study was funded by the European Integrated project NANOSAFE2 (Project ID: NMP2-CT-2005-515843), supported by the Sixth Framework Programme for Research and Technological Development. The authors alone are responsible for the content and writing of the paper.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.