Publication Cover
Inhalation Toxicology
International Forum for Respiratory Research
Volume 24, 2012 - Issue 14
190
Views
23
CrossRef citations to date
0
Altmetric
Research Article

Deposition behavior of inhaled nanostructured TiO2 in rats: fractions of particle diameter below 100 nm (nanoscale) and the slicing bias of transmission electron microscopy

, , , &
Pages 939-951 | Received 10 Aug 2012, Accepted 05 Oct 2012, Published online: 10 Dec 2012
 

Abstract

Context: In experimental studies with nanomaterials where translocation to secondary organs was observed, the particle sizes were smaller than 20 nm and were mostly produced by spark generators. Engineered nanostructured materials form microsize aggregates/agglomerates. Thus, it is unclear whether primary nanoparticles or their small aggregates/agglomerates occur in non-negligible concentrations after exposure to real-world materials in the lung. Objective: We dedicated an inhalation study with nanostructured TiO2 to the following research question: Does the particle size distribution in the lung contain a relevant subdistribution of nanoparticles? Methods: Six rats were exposed to 88 mg/m3 TiO2 over 5 days with 20% (count fraction) and <0.5% (mass fraction) of nanoscaled objects. Three animals were sacrificed after cessation of exposure (5 days), others after a recovery period of 14 days. Particle sizes were determined morphometrically by transmission electron microscopy (TEM) of ultra-thin lung slices. Since the particles visible are two-dimensional surrogates of three-dimensional structures we developed a model to estimate expected numbers of particle diameters below 100 nm due to the TEM slicing bias. Observed and expected numbers were contrasted in 2 × 2 tables by odds ratios. Results: Comparisons of observed and expected numbers did not present evidence in favor of the presence of nanoparticles in the rat lungs. In simultaneously exposed satellite animals agglomerates of nanostructured TiO2 were observed in the mediastinal lymph nodes but not in secondary organs. Conclusions: For nanostructured TiO2, the deposition of nanoscaled particles in the lung seem to play a negligible role.

View correction statement:
Corrigendum

Acknowledgment

We acknowledge Mrs Inta Koegel and Mrs Vanessa Hebestreit for their excellent technical assistance.

Declaration of interest

BASF SE and Evonik Industries produce TiO2 or produce products containing TiO2.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.