Publication Cover
Inhalation Toxicology
International Forum for Respiratory Research
Volume 25, 2013 - Issue 9
215
Views
13
CrossRef citations to date
0
Altmetric
Research Article

Induction of cardiac fibrosis and transforming growth factor-β1 by motorcycle exhaust in rats

, , , , &
Pages 525-535 | Received 22 Apr 2013, Accepted 24 May 2013, Published online: 02 Aug 2013
 

Abstract

Motorcycle exhaust (ME) is a major source of air pollution and a potential health hazard in urban areas where motorcycles are a popular means of transportation. The main objectives of this study were to determine the ability of ME to cause cardiotoxicity in rats and investigate the possible mechanisms of toxicity. Male rats were exposed to 1:10 diluted ME by inhalation 2 h daily and Monday through Friday for 8 weeks. Exposure to ME increased heart weight and decreased cardiac antioxidant enzymes glutathione S-transferase (GST), superoxide dismutase and glutathione peroxidase activities in a concentration- and time-dependent manner. Analysis of echocardiographic parameters indicated that ME increased left ventricle posterior wall thickness, interventricular septum thickness and left ventricle mass. Histopathological examinations of the hearts revealed that ME exposure caused focal cardial degeneration and necrosis, mononuclear cell infiltration, and fibrosis. The results of reverse transcriptase-polymerase chain reaction studies showed that ME decreased GST-M1 and GST-P1 mRNA expression and increased the expression of proinflammatory cytokine interleukin-1β, hypertrophy marker atrial natriuretic peptide, fibrosis markers type I and III collagen, profibrotic cytokine connective tissue growth factor, and hypertrophy and fibrosis mediator transforming growth factor (TGF)-β1 in the heart. The data of Western blot analysis showed that cardiac TGF-β1 protein was induced by ME. These findings demonstrate that subchronic ME exposure caused hypertrophy and fibrosis, and modulated GST and TGF-β1 expression in rat heart possibly by mechanisms involving oxidative stress and inflammation.

Acknowledgements

The authors thank the assistance of Chien-Han Chen, Hsiang-Yu Hsueh, Huei-Chieh Yu and Tsai-Wei Li in conducting ME exposure, RT-PCR and Western blot experiments.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.