809
Views
33
CrossRef citations to date
0
Altmetric
Research Paper

Neural mobilization promotes nerve regeneration by nerve growth factor and myelin protein zero increased after sciatic nerve injury

, , , , , , , , & show all
Pages 8-13 | Received 23 Jun 2014, Accepted 06 Aug 2014, Published online: 09 Dec 2014
 

Abstract

Neurotrophins are crucial in relation to axonal regrowth and remyelination following injury; and neural mobilization (NM) is a noninvasive therapy that clinically is effective in neuropathic pain treatment, but its mechanisms remains unclear. We examined the effects of NM on the regeneration of sciatic nerve after chronic constriction injury (CCI) in rats. The CCI was performed on adult male rats, submitted to 10 sessions of NM, starting 14 days after CCI. Then, the nerves were analyzed using transmission electron microscopy and western blot for neural growth factor (NGF) and myelin protein zero (MPZ). We observed an increase of NGF and MPZ after CCI and NM. Electron microscopy revealed that CCI-NM samples had high numbers of axons possessing myelin sheaths of normal thickness and less inter-axonal fibrosis than the CCI. These data suggest that NM is effective in facilitating nerve regeneration and NGF and MPZ are involved in this effect.

Declaration of interest

No competing financial interests exist.

This study was supported by FAPESP (2011/22268-0), CNPq, CAPES (Brazil).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.