78
Views
15
CrossRef citations to date
0
Altmetric
Research Article

Two-step impact of Amphotericin B (AmB) on lipid membranes: ESR experiment and computer simulations

&
Pages 327-335 | Received 11 Apr 2013, Accepted 09 Jun 2013, Published online: 16 Jul 2013
 

Abstract

In this study, the electron spin resonance (ESR) method was used to examine the effect of Amphotericin B (AmB) molecules on the fluidity of model membranes made of dipalmitoylphosphatidylcholine (DPPC). The changes occurring under increased AmB concentrations in the spectroscopic parameters of spin probes placed in liposomes were determined. Three probes were used, penetrating the membrane at different depths which allowed the changes in its fluidity to be found in the transverse section. A computer model of the surface layer of membrane, with AmB admixture, was developed and subjected to computer simulation. The effect of changing concentration of the admixture on the binding energy in the system of dipoles representing the surface of the membrane was examined. The ESR studies showed that the process of accumulation of AmB molecules in the membrane has two stages, marked by local maxima in the ESR spectra. The first appears for concentrations of ca. 0.25–0.5% and the second appears for ca. 2.5–3% AmB of its molar ratio to DPPC. The computer simulations permitted reconstructing the two-stage mechanism of interaction between the molecules and the membrane. They demonstrated that, at low concentrations, the AmB molecules position themselves flat on the membrane surface. After the threshold concentration is exceeded, they re-orientate to a vertical position. This process leads to the perforation of the membrane.

Notice of Correction

Figure 11a and 13a were incorrectly placed in the original online article published on July 16th 2013 (DOI - 10.3109/08982104.2013.814139), this has now been corrected. We apologise for this error.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.