91
Views
3
CrossRef citations to date
0
Altmetric
Effect of high velocity, large amplitude stimuli on the spread of depolarization in S1 “barrel” cortex

Effect of high velocity, large amplitude stimuli on the spread of depolarization in S1 “barrel” cortex

, &
Pages 73-85 | Received 17 Jul 2010, Accepted 07 Aug 2011, Published online: 13 Dec 2011
 

Abstract

We examined the effect of large, controlled whisker movements, delivered at a high speed, on the amplitude and spread of depolarization in the anesthetized mouse barrel cortex. The stimulus speed was varied between 1500 and 6000°/s and the extent of movement was varied between 4° and 16°. The rate of rise of the response was linearly related to the rate of rise of the stimulus. The initial spatial extent of cortical activation was also related to the rate of rise of the stimulus: that is, the faster the stimulus onset, the faster the rate of rise of the response, the larger the extent of cortex activated initially. The spatial extent of the response and the rate of rise of the response were not correlated with changes in the deflection amplitude. However, slower, longer lasting stimuli produced an Off response, making the actual extent of activation larger for the slowest rising stimuli. These results indicate that the spread of cortical activation depends on stimulus features.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.