23
Views
19
CrossRef citations to date
0
Altmetric
Original Article

Slowly Adapting Cutaneous Mechanoreceptor Afferent Units Associated with Merkel Cells in Frogs and Effects of Direct Currents

&
Pages 87-95 | Published online: 10 Jul 2009
 

Abstract

In the bullfrog, two types of slowly adapting (SA) cutaneous mechanoreceptor afferent units have been identified physiologically: irregularly discharging frog type I (Ft I) units in both warty and nonwarty skin, and regularly discharging frog type II (Ft II) units in the nonwarty skin. In the present study, mechanosensitive spots of Ft I units were located around the skin warts in the warty skin. The quinacrine technique (Crowe and Whitear, 1978) revealed that quinacrine-accu-mulating Merkel cells were present around the skin warts and near the orifice of skin glands that also surrounded the skin warts. Thus, a significant correlation was found between the location of Merkel cells and the receptive fields (RFs) of Ft I units in the warty skin.

Direct current (DC) stimulation was applied for 1 sec to the skin inside and outside the mechanical RFs of the two types of SA units. RFs for DC stimulation were located on those for mechanical stimulation in both types of SA units. The current threshold required to produce a single spike was lower in cathodal than in anodal pulses in both types of SA units. Greater current intensity elicited an increased number of spikes, but the effective polarity of currents was anodal for Ft I units and cathodal for Ft II units. The optimal current intensity for producing prolonged discharges ranged from +60 to +100 μA in Ft I units and from -50 to -80 μA in Ft II units. The sequence of impulses evoked was irregular in Ft I units and regular in Ft II units, as seen in mechanical responses. When current of the effective polarity for each type of unit was superimposed on the mechanical indentations, it facilitated the mechanical response. Currents of opposite polarity were not effective without mechanical indentation, but when used together, they depressed the mechanical response in both the Ft I units and the Ft II units. Thus, different polarities of DC could selectively activate two different types of SA units in bullfrogs. We consider these findings in connection with a presumed receptor structure for each type of unit; it is likely that the prolonged discharges in the Ft I unit are produced by active involvement of Merkel cells, whereas those in Ft II units are the result of a direct activation of afferent nerve terminals.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.