43
Views
18
CrossRef citations to date
0
Altmetric
Original Article

The Tactile Movement Aftereffect

&
Pages 153-162 | Accepted 10 Mar 1994, Published online: 10 Jul 2009
 

Abstract

The existence of a tactile movement aftereffect was established in a series of experiments on the palmar surface of the hand and fingers of psychophysical observers. During adaptation, observers cupped their hand around a moving drum for up to 3 min; following this period of stimulation, they typically reported an aftereffect consisting of movement sensations located on and deep to the skin, and lasting for up to 1 min. Preliminary experiments comparing a number of stimulus materials mounted on the drum demonstrated that a surface approximating a low-spatial-frequency square wave, with a smooth microtexture, was especially effective at inducing the aftereffect; this adapting stimulus was therefore used throughout the two main experiments. In Experiment 1, the vividness of the aftereffect produced by 2 min of adaptation was determined under three test conditions: with the hand (1) remaining on the now stationary drum; (2) in contact with a soft, textured surface; or (3) suspended in air. Subjects' free magnitude estimates of the peak vividness of the aftereffect were not significantly different across conditions; each subject experienced the aftereffect at least once under each condition. Thus the tactile movement aftereffect does not seem to depend critically on the conditions of stimulation that obtain while it is being experienced. In Experiment 2, the vividness and duration of the aftereffect were measured as a function of the duration of the adapting stimulus. Both measures increased steadily over the range of durations explored (30–180 sec). In its dependence on adapting duration, the aftereffect resembles the waterfall illusion in vision. An explanation for the tactile movement aftereffect is proposed, based on the model of cortical dynamics of Whitsel et al. (1989, 1991). With assumed modest variation of one parameter across individuals, this application of the model is able to account both for the data of the majority of subjects, who experienced the aftereffect as opposite in direction to the adapting stimulus, and for those of an anomalous subject, who consistently experienced the aftereffect as being in the same direction as the adapting stimulus.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.