161
Views
0
CrossRef citations to date
0
Altmetric
Original

Modifying spiking precision in conductance-based neuronal models

, , , &
Pages 1-26 | Received 13 Nov 2012, Accepted 14 Dec 2012, Published online: 26 Feb 2013
 

Abstract

The temporal precision of a neuron's spiking can be characterized by calculating its “jitter,” defined as the standard deviation of the timing of individual spikes in response to repeated presentations of a stimulus. Sub-millisecond jitters have been measured for neurons in a variety of experimental systems and appear to be functionally important in some instances. We have investigated how modifying a neuron's maximal conductances affects jitter using the leaky integrate-and-fire (LIF) model and an eight-conductance Hodgkin-Huxley type (HH8) model. We observed that jitter can be largely understood in the LIF model in terms of the neuron's filtering properties. In the HH8 model we found the role of individual conductances in determining jitter to be complicated and dependent on the model's spiking properties. Distinct behaviors were observed for populations with slow (<11.5 Hz) and fast (>11.5 Hz) spike rates and appear to be related to differences in a particular channel's activity at times just before spiking occurs.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.