399
Views
46
CrossRef citations to date
0
Altmetric
miRNA and Radiation Sensitivity

Transcriptional modulation of micro-RNA in human cells differing in radiation sensitivity

, &
Pages 569-583 | Received 28 Aug 2009, Accepted 11 Feb 2010, Published online: 15 Jun 2010
 

Abstract

Purpose: The molecular basis of gene regulation in cells exposed to ionising radiation is not fully understood. Gene regulation occurs at the transcriptional and post-transcriptional levels. Recent studies have suggested that micro-RNA (miRNA) plays a significant role at the post-transcriptional gene regulation. miRNA are a recently identified class of RNA molecules 18–24 nucleotides in length that have been shown to negatively regulate the stability or translation of target messenger RNA. We hypothesised that ionising radiation induced stress response is controlled in part by miRNA and that a difference in tumour protein 53 (p53) status corresponds with altered expression in miRNA responses to ionising radiation.

Materials and methods: To test this hypothesis, we investigated the relative expression of several miRNA by quantitative real-time polymerase chain reaction (QPCR) in human cell lines TK6 and WTK1 that differ in p53 status and radiosensitivity after exposure to high and low doses of X-radiation.

Results: The suitability of several endogenous miRNA controls was tested for relative quantification by QPCR. The baseline expression of 21 miRNA targets in TK6 and WTK1 cells indicated a wide range of modulation between the two cell lines without exposure to ionising radiation. Differences in the relative expression of miRNA were observed among the two cell lines after radiation treatment. The expression patterns of many miRNA markedly differed within the same cell line after exposure to either 0.5 Gy or 2 Gy doses of X-rays. The expression of eight miRNA belonging to the lethal-7 (let-7) family, which are negative regulators of the rat sarcoma, RAS oncogene, was upregulated in irradiated TK6 cells but was downregulated in WTK1 cells. Alterations in the myelocytomatosis oncogene, c-MYC induced cluster of miRNA were also observed. The micro RNA, miR-15a and miR-16 were upregulated in 0.5 Gy-irradiated TK6 cells but were downregulated after a 2 Gy dose of X-rays. In contrast miR-15 and miR-16 were repressed in 0.5 Gy-exposed WTK1. The miR-21 was upregulated in 0.5 Gy-treated TK6 cells and its target genes programmed cell death factor 4 (hPDCD4) phosphatase and tensin homolog (hPTEN), and sprouty homolog 2 (hSPRY2) were found to be downregulated in these cells. The miR-21 was downregulated in 2 Gy-irradiated TK6 cells, and all three of its target genes were upregulated in 2 Gy-exposed TK6 cells.

Conclusion: Taken together, these results establish the involvement of miRNA in radiation response and may potentially help explain the mechanisms of gene regulation in the cellular response to ionising radiation exposure.

Acknowledgements

We thank Dr Howard Liber, Colorado State University, Fort Collins, CO, USA, for providing TK6 and WTK1 cells. The authors are grateful to the DNA analysis facility, University of Vermont, where the real-time PCR experiments were conducted. This work was aided by a grant to MAC from the Vermont Cancer Center and the Lake Champlain Cancer Research Organisation. Additional funding was provided by grants from the College of Nursing and Health Sciences, University of Vermont. BK was supported by McNair scholarship.

Declaration of interest: The authors report no conflicts of interest. The authors alone are responsible for the content and writing of the paper.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.