238
Views
13
CrossRef citations to date
0
Altmetric
ELF-MF APOPTOSIS, REPRODUCTION, OXIDATIVE STRESS

Protective mechanism of morin against ultraviolet B-induced cellular senescence in human keratinocyte stem cells

, , &
Pages 20-28 | Received 03 Mar 2013, Accepted 07 Aug 2013, Published online: 13 Sep 2013
 

Abstract

Purpose: Ultraviolet-B (UVB) irradiation is a major inducer of DNA damage in the epidermis. Here we investigated the protective mechanism of polyphenolic phytonutrient, morin against UVB-induced DNA damage in human keratinocyte stem cells (KSC).

Results and conclusions: After confirming the characteristics of the KSC, we examined the protective ability of morin against the cell damage of KSC under UVB irradiation condition. As a result, morin significantly inhibited the UVB-induced damage to KSC. These inhibitory effects by morin were also confirmed by the senescence-associated beta-galactosidase and alkaline comet assays. Next, we monitored the effects of morin on the UVB-induced production of inflammatory cytokines. Morin significantly decreased the production of tumor necrosis factor-α, interleukin-1β, and interleukin-6 in the UVB-irradiated KSC. Also, morin significantly inhibited the UVB-induced phosphorylation of ataxia telangiectasia mutated (ATM), serine threonine kinase checkpoint kinase 2, tumor suppressor protein 53 (p53), c-Jun N-terminal kinase/stress-activated protein kinase, p38/mitogen-activated protein kinase, S6 ribosomal protein, and histone 2A family member X in KSC. Furthermore, while UVB irradiation induced p53 reporter activation in KSC, morin significantly inhibited UVB-induced p53 reporter activation in KSC. In addition, mouse double minute 2 homolog (MDM2, p53 E3 ubiquitin protein ligase) inhibitor significantly increased the p53 reporter activation in the UVB-irradiated KSC, but morin decreased the MDM2 inhibitor-mediated increase in p53 reporter activation. On the contrary, ATM inhibitor did not affect the protective effect of morin in UVB irradiation-induced p53 reporter activation. Collectively, these findings suggest that morin could effectively enrich the p53 specific ligasing ability of MDM2 in UVB irradiation-induced p53 activation.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.