731
Views
27
CrossRef citations to date
0
Altmetric
IONIZING RADIATION ACTIVATED SIGNALING

Ionizing radiation activates PERK/eIF2α/ATF4 signaling via ER stress-independent pathway in human vascular endothelial cells

, , &
Pages 306-312 | Received 14 Aug 2013, Accepted 16 Jan 2014, Published online: 19 Mar 2014
 

Abstract

Purpose: Perturbations in protein folding induce endoplasmic reticulum (ER) stress, which elicits coordinated response, namely the unfolded protein response (UPR), to cope with the accumulation of misfolded proteins in ER. In this study, we characterized mechanisms underlying ionizing radiation (IR)-induced UPR signaling pathways.

Materials and methods: We analyzed alterations in UPR signaling pathways in human umbilical vein endothelial cells (HUVEC) and human coronary artery endothelial cells (HCAEC) irradiated with 15 Gy IR.

Results: IR selectively activated the eIF2α/ATF4 branch of the UPR signaling pathway, with no alterations in the IRE1 and ATF6 branches in HUVEC and HCAEC. Phosphorylation of PERK was enhanced in response to IR, and the IR-induced activation of the eIF2α/ATF4 signaling pathway was completely inhibited by PERK knockdown with siRNA. Surprisingly, chemical chaperones, which inhibit the formation of misfolded proteins and sequential protein aggregates to reduce ER stress, failed to prevent the IR-induced phosphorylation of PERK and the subsequent activation of the eIF2α/ATF4 signaling pathway.

Conclusions: PERK mediates the IR-induced selective activation of the eIF2α/ATF4 signaling pathway, and the IR-induced activation of PERK/eIF2α/ATF4 signaling in human vascular endothelial cells is independent of alterations in protein-folding homeostasis in the ER.

Declaration of interest

The authors report no conflicts of interest. The authors alone are responsible for the content and writing of the paper.

This study was supported by the Nuclear Research and Development Program of the National Research Foundation of Korea (NRF) funded by the Korean government (Ministry of Education, Science, and Technology; grant code: 50034-2013, 2011-0031697, and 2012M2A2A7012483)

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.