191
Views
4
CrossRef citations to date
0
Altmetric
TGF-BETA3, PEROXYNITRATE AND HRS

The roles of TGF-β3 and peroxynitrite in removal of hyper-radiosensitivity by priming irradiation

, , , &
Pages 527-537 | Received 20 Jun 2013, Accepted 05 Mar 2014, Published online: 20 Mar 2014
 

Abstract

Purpose: To investigate the mechanisms inducing and maintaining the permanent elimination of low dose hyper-radiosensitivity (HRS) in cells given a dose of 0.3 Gy at low dose-rate (LDR) (0.3 Gy/h).

Materials and methods: Two human HRS-positive cell lines (T-47D, T98G) were used. The effects of pretreatments with transforming growth factor beta (TGF-β) neutralizers, TGF-β3 or peroxynitrite scavenger on HRS were investigated using the colony assay. Cytoplasmic levels of TGF-β3 were measured using post-embedding immunogold electron microscopic analysis.

Results: TGF-β3 neutralizer inhibited the removal of HRS by LDR irradiation. Adding 0.001 ng/ml TGF-β3 to cells removed HRS in T98G cells while 0.01 ng/ml additionally induced resistance to higher doses. Cytoplasmic levels of TGF-β3 were higher in LDR-primed cells than in unirradiated cells. The presence of the peroxynitrite scavenger uric acid inhibited the effect of LDR irradiation. Furthermore, the permanent elimination of HRS in LDR-primed cells was reversed by treatment with uric acid. The removal of HRS by medium from hypoxic cells was inhibited by adding TGF-β3 neutralizer to the medium before transfer or by adding hypoxia inducible factor 1 (HIF-1) inhibitor chetomin to the cell medium during hypoxia.

Conclusions: TGF-β3 is involved in the regulation of cellular responses to small doses of acute irradiation. TGF-β3 activation seems to be induced by low dose-rate irradiation by a mechanism involving inducible nitric oxide (iNOS) and peroxynitrite, or during cycling hypoxia by a mechanism most likely involving HIF-1. The study suggests methods to turn resistance to doses in the HRS-range on (by TGF-β3) or off (by TGF-β3 neutralizer or by peroxynitrite inhibition).

Declaration of interest

The authors report no conflicts of interest. The authors alone are responsible for the content and writing of the paper.

This work was supported by EU FP7 grant No. 222741 (METOXIA), the Research Council of Norway, and the Norwegian Cancer Society.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.