228
Views
9
CrossRef citations to date
0
Altmetric
PULSED WEAK MF AND NONSPECIFIC OPIOID ACTIVITY

Comparisons of responses by planarian to micromolar to attomolar dosages of morphine or naloxone and/or weak pulsed magnetic fields: Revealing receptor subtype affinities and non-specific effects

&
Pages 833-840 | Received 27 Jan 2014, Accepted 25 Mar 2014, Published online: 07 May 2014
 

Abstract

Purpose: The behavioral responses of planaria to the exposures of a range of concentrations of morphine (μM to attoM) or the μ-opiate antagonist naloxone or to either of these compounds and a burst-firing magnetic field (5 μT) were studied.

Material and methods: The locomotor velocity (LMV) of planaria was measured after individual worms were exposed to increasing concentrations from attomolar to micromolar of morphine or naloxone, physiologically patterned magnetic fields or a combination of the two.

Results: Compared to spring water controls, the 2-hour exposure to the patterned magnetic field before measurement reduced activity by about 50% which was comparable to the non-specific effects of morphine and naloxone across all dosages except 1 attomolar that did not differ from spring water. The specific dosage of 100 nM produced additional marked reduction in activity for planaria exposed to either morphine or naloxone while only 1 pM of morphine produced this effect.

Conclusion: The results support the presence of at least two receptor subtypes that mediate the diminished activity effects elicited by morphine specifically and suggests that exposure to the specifically patterned magnetic field produces a behavioral suppression whose magnitude is similar to the ‘dose independent’ effects from this opiate.

Declaration of interest

The authors report no conflicts of interest. The authors alone are responsible for the content and writing of the paper.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.