2,057
Views
135
CrossRef citations to date
0
Altmetric
IONISING RADIATION-INDUCED OXIDATIVE STRESS

Ionizing radiation-induced oxidative stress, epigenetic changes and genomic instability: The pivotal role of mitochondria

Pages 1-12 | Received 03 Feb 2014, Accepted 09 Jun 2014, Published online: 17 Jun 2014
 

Abstract

Purpose: To review the data concerning the role of endogenously generated reactive oxygen species (ROS) in the non-targeted ionizing radiation (IR) effects and in determination of the cell population's fate, both early after exposure and after many generations.

Conclusions: The short-term as well as chronic oxidative stress responses mainly are produced due to ROS generation by the electron transport chain (ETC) of the mitochondria and by the cytoplasmic NADPH oxidases. Whether the induction of the oxidative stress and its consequences occur or are hampered in a single cell largely depends on the interaction between the nucleus and the cellular population of several hundred or thousands of mitochondria that are genetically heterogeneous. High intra-mitochondrial ROS level is damaging the mitochondrial (mt) DNA and its mutations affect the epigenetic control mechanisms of the nuclear (n) DNA, by decreasing the activity of methyltransferases and thus, causing global DNA hypomethylation. These changes are transmitted to the progeny of the irradiated cells. The chronic oxidative stress is the main cause of the late post-radiation effects, including cancer, and this makes it an important adverse effect of exposure to IR and a target for radiological protection.

Acknowledgements

The assistance of Monica Borrin-Flint in the preparation of the manuscript is gratefully acknowledged. The author was supported by the statutory grant of the Ministry of Science and Higher Education to the Institute of Nuclear Chemistry and Technology.

Declaration of interest

The author reports no conflicts of interest. The author alone is responsible for the content and writing of the paper.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.