690
Views
25
CrossRef citations to date
0
Altmetric
Research Article

Membrane phase behavior during cooling of stallion sperm and its correlation with freezability

, , , , &
Pages 95-106 | Received 09 Oct 2011, Accepted 26 Feb 2012, Published online: 05 Apr 2012
 

Abstract

Stallion sperm exhibits great male-to-male variability in survival after cryopreservation. In this study, we have investigated if differences in sperm freezability can be attributed to membrane phase and permeability properties. Fourier transform infrared spectroscopy (FTIR) was used to determine supra and subzero membrane phase transitions and characteristic subzero membrane hydraulic permeability parameters. Sperm was obtained from stallions that show differences in sperm viability after cryopreservation. Stallion sperm undergoes a broad and gradual phase transition at suprazero temperatures, from 30–10°C, whereas freezing-induced dehydration of the cells causes a more severe phase transition to a highly ordered gel phase. Sperm from individual stallions showed significant differences in post-thaw progressive motility, percentages of sperm with abnormal cell morphology, and chromatin stability. The biophysical membrane properties evaluated in this study, however, did not show clear differences amongst stallions with differences in sperm freezability. Cyclodextrin treatment to remove cholesterol from the cellular membranes increased the cooperativity of the suprazero phase transition, but had little effects on the subzero membrane phase behavior. In contrast, freezing of sperm in the presence of protective agents decreased the rate of membrane dehydration and increased the total extent of dehydration. Cryoprotective agents such as glycerol decrease the amount of energy needed to transport water across cellular membranes during freezing.

Declaration of interest: This work was financially supported by the German Research Foundation (Deutsche Forschungsgemeinschaft [DFG]), Cluster of Excellence ‘From regenerative biology to reconstructive therapy’ (REBIRTH). The authors report no conflicts of interest. The authors alone are responsible for the content and writing of the paper.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.