4
Views
0
CrossRef citations to date
0
Altmetric
Original Article

Polyamine Binding Sites in the Rat Brain Hippocampus Plasma Membranes: MK 801 Does Not Influence the Binding Process

, , &
Pages 163-169 | Received 21 Feb 1991, Accepted 24 May 1991, Published online: 09 Jul 2009
 

Abstract

The study was undertaken to characterize the polyamine binding sites in rat brain hippocampus plasma membranes. There were two types of binding sites for putrescine, Bmax 650 and 100 pmol/mg protein, with Kd1 = 39.2 and Kd2 = 6.7 µM, respectively, while those for spermidine (Spd) and spermine (Spm) represented only one type of population with Bmax 2.55 and 15 nmol/mg protein, respectively. The Kd values for Spd and Spm were 34 and 30.3 µM, respectively. The maximum binding of polyamines was found at pH 8.0. The binding capacity of these molecules was curtailed at 4°C, indicating that the binding is an energy-dependent phenomenon. The specific binding was not appreciably influenced by the addition of MK 801, an antagonist of NMDA receptor, indicating that there are polyamine-specific binding sites that are different from those for MK 801. Glycine also did not significantly influence the binding of these biogenic amines. Interestingly, the addition of polyamino acids (polylysine, polyornithine, and polyglutamic acid) inhibited the polyamine binding to their receptor sites, supporting the notion that positive charge of polyamines could be important factor in the binding process.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.