161
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Hydroxylation of polypropylene using the monooxygenase mutant 139-3 from Bacillus megaterium BM3

, , , , , , , , & show all
Pages 57-62 | Published online: 20 Jan 2012
 

Abstract

Enzymatic hydroxylation of polypropylene (PP) was investigated in order to increase hydrophilicity. A mutant (139-3) of the P450monooxygenase from Bacillus megaterium expressed in E. coli DH5α was purified using anion exchange chromatography. Hydroxylation of PP fabrics led to a dramatic increase of hydrophilicity as indicated by a water drop dissipation time of below 1 s compared to the hydrophobic reference material. Likewise, a 4.9 cm increase of rising height was measured which remained consistent after 144 h of storage. Similarly, enzymatic hydroxylation of PP films lead to a decrease of the WCA from 104.6° to 77.3° with no major change after exposure to air for 6 days. Using X-ray photoelectron spectroscopy, an increase in normalized atomic concentrations of oxygen from 1.40 to 4.98% for the CO-inhibited and enzyme treated sample, respectively, was measured confirming enzymatic hydroxylation.

Declaration of interests: This study was performed within Austrian Centre of Industrial Biotechnology ACIB, the MacroFun project and COST Action 868. This work has been supported by the Federal Ministry of Economy, Family and Youth (BMWFJ), the Federal Ministry of Traffic, Innovation and Technology (bmvit), the Styrian Business Promotion Agency SFG, the Standortagentur Tirol and ZIT - Technology Agency of the City of Vienna through the COMET-Funding Program managed by the Austrian Research Promotion Agency FFG.

The authors report no conflicts of interest. The authors alone are responsible for the content and writing of the paper.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.