83
Views
70
CrossRef citations to date
0
Altmetric
Original Article

Fatty Acid Specificity in Lipase-Catalyzed Synthesis of Glucoside Esters

, , &
Pages 127-134 | Received 14 Aug 1991, Accepted 09 Jan 1992, Published online: 11 Jul 2009
 

Abstract

The fatty acid specificity of the B-lipase derived from Candida antarctica was investigated in the synthesis of esters of ethyl D-glucopyranoside. The specificity was almost identical with respect to straight-chain fatty acids with 10 to 18 carbon atoms. However, lower fatty acids such as hexanoic and octanoic acid and the unsaturated 9-cis-octadecenoic acid were found to be poor substrates of the enzyme. As a consequence of this selectivity, these fatty acids were accumulated in the unconverted fraction when ethyl D-glucopyranoside was esterified with an excess of a mixture of fatty acids. This accumulation can reduce the overall effectiveness of the process as the activity of the lipase was found to be reduced when exposed to high concentrations of short-chain fatty acids. Finally, using a simplified experimental set-up, the specificity of the C. antarctica B-lipase was compared to the specificity of lipases derived from C. rugosa, Mucor miehei, Humicola, and Pseudomonas. Apart from the C. rugosa lipase, which exhibited a very poor performance, all the enzymes showed a very similar specificity with respect to fatty acids longer than octanoic acid while only the C. antarctica B-lipase showed activity towards sort-chain fatty acids.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.