Publication Cover
Stress
The International Journal on the Biology of Stress
Volume 15, 2012 - Issue 1
1,119
Views
27
CrossRef citations to date
0
Altmetric
Original Research Reports

Influence of brain-derived neurotrophic factor and catechol O-methyl transferase polymorphisms on effects of meditation on plasma catecholamines and stress

, , , , , , , , & show all
Pages 97-104 | Received 29 Sep 2010, Accepted 27 May 2011, Published online: 26 Jul 2011
 

Abstract

Meditation may show differential effects on stress and plasma catecholamines based on genetic polymorphisms in brain-derived neurotrophic factor (BDNF) and catechol O-methyl transferase (COMT). Eighty adults (40 men, 40 women; mean age 26 years) who practiced meditation regularly and 57 healthy control adults (35 men, 22 women; mean age 26 years) participated. Plasma catecholamines (norepinephrine (NE), epinephrine (E), and dopamine (DA)) concentrations were measured, and a modified form of the Stress Response Inventory was administered. The results were analyzed using two-way analysis of covariance (ANCOVA) with control and meditation subjects, gene polymorphism as factors, and meditation duration as the covariate. Two-way ANCOVA showed a significant interaction between control and meditation subjects, and BDNF Val66Met polymorphism on DA/NE+DA/E (p = 0.042) and NE/E+NE/DA (p = 0.046) ratios. A significant interaction was found for control and meditation subjects with COMT Val158Met polymorphism and plasma NE concentrations (p = 0.009). Post hoc ANCOVA in the meditation group, adjusted for meditation duration, showed significantly higher plasma NE concentrations for COMT Met carriers than COMT Val/Val subjects (p = 0.025). Significant differences of stress levels were found between the control and meditation subjects in BDNF Val/Met (p < 0.001) and BDNF Met/Met (p = 0.003), whereas stress levels in the BDNF Val/Val genotype did not differ between the control and meditation groups. This is the first evidence that meditation produces different effects on plasma catecholamines according to BDNF or COMT polymorphisms.

Acknowledgements

The authors give special thanks to Korean Institute of Brain Science for the assistance in the current study. This work was supported by Cognitive Neuroscience Program of the Korean Ministry of Science and Technology (M10644020003-08N4402-00310).

Declaration of interest: The authors report no conflicts of interest. The authors alone are responsible for the content and writing of the paper.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.