309
Views
85
CrossRef citations to date
0
Altmetric
Research Article

On the Role of DNA Double-Strand Breaks in Toxicity and Carcinogenesis

, &
Pages 155-174 | Published online: 25 Sep 2008
 

Abstract

DNA double-strand breaks are associated with various endogenous processes, such as transcription, recombination, replication, and with the process of active cell death, which aims to eliminate cells. In addition, DNA double-strand breaks can be induced by irradiation, exposure to chemicals, increased formation of reactive oxygen species, and, indirectly, during repair of other types of DNA damage or as a consequence of extranuclear lesions. In addition to the neutral filter elution of DNA, the recently introduced pulsed-field gel electrophoresis is capable of determining DNA double-strand breaks with higher accuracy and sensitivity and is expected to increase our knowledge on the frequency and the role of DNA breakage. Parallel determination of parameters for cytotoxicity is necessary to elucidate the causal primary lesion. Although the repair of DNA double-strand breaks is a complex task, cells are capable of repairing — with or without errors and up to a certain extent — and surviving this DNA lesion. Gene translocations, rearrangements, amplifications, and deletions arising during repair and misrepair of double-strand breaks may contribute to cell transformation and tumor development.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.